Lesson I aps/laps
WALT: Add multiples of ten
WILF: I understand I need to add the tens digit.

Tens	Ones			
$\\|\\|\\|$				
$\\|\\|\\|$				
7	2			

$$
32+40=\frac{}{32}+\quad+40 \quad \begin{array}{r}
32 \\
\end{array}
$$

$20+32=$ \qquad
20
$+32$
$51+40=$
51
$+40$

Tens
Ones
$30+23=$

Lesson I aps/haps
WALT: Add multiples of ten
WILF: I understand I need to add the tens digit.

Tens	Ones	
UN\\|		

$$
\begin{aligned}
& 32+40=- \\
& 32 \\
&+40
\end{aligned}
$$

$20+32=$ \qquad
20 $+32$
$51+40=$

$30+23=$

Lesson I aps/haps
WALT: Subtract multiples of ten
WILF: I understand I need to subtract the tens digit.

Tens	Ones		

$$
42-30=
$$

$$
42
$$

$$
-30
$$

$59-20=$

Tens	Ones

Tens	Ones

$61-50=$

Lesson I aps/laps
WALT: Subtract multiples of ten
WILF: I understand I need to subtract the tens digit.

Tens	Ones
$1 / 1$	2
1	

$$
42-30=
$$

$$
42
$$

$$
-30
$$

$59-20=$

$$
73-40=
$$

Tens	Ones

$61-50=$

4.10 .17

WALT: Subtract multiples of ten
WILF: I understand I need to subtract the tens digit.

Tens	Ones
$1 / 1$	2
1	

$$
42-30=
$$

$$
42
$$

$$
-30
$$

$59-20=$
$73-40=$
$61-50=$

Lesson 1
Greater depth challenge:
What is the value of each row and column?

Show your working out

Circles represent 20
Triangles represent 10
Squares represent 50
Greater depth challenge:
What is the value of each row and column?

Show your working out

Circles represent 20
Triangles represent 10
Squares represent 50

Lesson 2 - laps (count on in Is)
WALT: Add 2 digit and 1 digit numbers (crossing ten) WILF: I can count on using a number line; I can use my number bonds

$$
\begin{aligned}
& \text { 1. } 14+7=\square \\
& \text { || || | | | | | | | | | | | | | | | | | } \\
& \text { 14 } 16171819202324 \\
& \text { 2. } 18+6=\square
\end{aligned}
$$

3. $27+5=\square$

Can you do the last one in your head?

$$
\text { 4. } 36+6=
$$

Lesson 2 aps
WALT: Add 2 digit and 1 digit numbers (crossing ten) WILF: I can count on using a number line; I can use my number bonds

$$
\begin{aligned}
& \text { 1. } 14+7= \\
& 6 \text { | } \\
& \text { 2. } 18+6=
\end{aligned}
$$

3. $27+5=\square$

Can you do the last one in your head?

$$
\text { 4. } 36+6=
$$

Lesson 2 - haps
WALT: Add 2 digit and 1 digit numbers (crossing ten) WILF: I can count on using a number line; I can use my number bonds

$$
\text { 1. } 14+\underset{6}{7}=\square
$$

$$
14
$$

$$
\text { 2. } 18+6=\square
$$

\qquad
3.
$27+5=$

Can you do the last one in your head?

$$
\text { 4. } 36+6=
$$

Greater depth challenge:

Here are three digit cards.

Place the digit cards in the number sentence.

How many different totals can you find?

$$
\square+\square=
$$

Which is the smallest total?

Which is the largest total?

Greater depth challenge:

Here are three digit cards.

Place the digit cards in the number sentence.

How many different totals can you
find?

$=$

Which is the smallest total?

Which is the largest total?

Lesson 3 - laps/aps
WALT: Add 2 digit and I digit numbers (crossing ten)
WILF: I can partition 2 digit numbers in order to add them; I can line numbers up in columns;
I can use my number bonds
Greater Depth: Use the number line counting on method to check that you are correct

Tens	Ones		
$\\|\\|$	$: \%$		
34	12		

$$
36+8=
$$

Tens	Ones

$27+5=$
27 +5
+
$58+4=$
58
$+4$

$38+9=$

Lesson 3 aps/haps
WALT: Add 2 digit and 1 digit numbers (crossing ten)
WILF: I can partition 2 digit numbers in order to add them; I can line numbers up in columns;
I can use my number bonds
Greater Depth: Use the number line counting on method to check that you are correct

Tens	Ones
344	12
3	

$$
36+8=
$$

Tens	Ones

$27+5=$
27
+5
+
$58+4=$
$38+9$

Tens	Ones

Tens	Ones

Lesson 4 - ops
WALT: Subtract 2 digit and 1 digit numbers (crossing ten) WILF: I can count back using a number line I can use my number bonds

$$
\text { 1. } 24-8=
$$

1415161718192021222324

2. $25-6=\square$

3. $35-8=\square$

Can you do the last one in your head?

$$
\text { 4. } 42-5=\square
$$

Lesson 4 (aps/laps)
WALT: Subtract 2 digit and 1 digit numbers (crossing ten)
WILF: I can count back using a number line I can use my number bonds

$$
\text { 1. } 24-\underset{4}{8}=
$$

1415161718192021222324

2. $25-6=\square$

3. $35-8=\square$

Can you do the last one in your head?

$$
\text { 4. } 42-5=
$$

Lesson 4 Haps
WALT: Subtract 2 digit and 1 digit numbers (crossing ten)
WILF: I can count back using a number line I can use my number bonds

$$
\text { 1. } 24-\underset{4}{4}=
$$

$$
\begin{aligned}
& 14 \\
& \text { 2. } 36-8=\square
\end{aligned}
$$

\qquad

$$
\text { 3. } 25-7=\square
$$

Can you do the last one in your head?

$$
\text { 4. } 56-8=\square
$$

Lesson 4

Greater depth challenge:

Here are three digit cards:
4
2 q

Place the digit cards in the Number sentence.

How many disgerent totals can you find?

What is the smallest total?
What is the largest total?
Greater depth challenge:
Here are three digit cards:

Place the digit cards in the Number sentence.

How many disgerent totals can you sind?

What is the smallest total?
What is the largest total?

Greater depth challenge:

Here are three digit cards:

Lesson 6
WALT: Subtract 2 digit and 1 digit numbers (crossing ten) WILF: I can partition 2 digit numbers in order to subtract them;
I can line numbers up in columns
I can use my number bonds

$31-7=\square$		
Tens	Ones	
$1 \\| /$	4	
2	4	

$44-6=\square$

Tens	Ones

$56-8=\square$

Tens	Ones

$63-5=$

Tens	Ones

Greater depth: Can you use another method to check if your answers are correct?

Lesson 7 aps/laps
WALT: Add two 2-digit numbers (not crossing tens) WILF: I can use the column method; I can use dienes to help partition the numbers into tens and ones

Tens	Ones	$41+26=$	4	1
111	\bullet		2	6
	*:	1 ones and 6 ones		7
		4 tens and 2 tens	6	0
6	7	6 tens and 7 ones		

Tens	Ones	$33+24=$	3	3		
$\\|\\|$	- *		2	4		
		3 ones and 4 ones				
		3 tens and 2 tens				

Tens	Ones	$56+32=$		5	6
			$+$	3	2

Greater depth: Hamza has 41 sweets. Jemima has 25 sweets. How many sweets do they have altogether? Can you represent the problem by drawing dienes to help?

Lesson 7 aps/haps
WALT: Add two 2-digit numbers (not crossing tens)
WILF: I can use the column method; I can use dienes to help partition the numbers into tens and ones

Tens	Ones	$41+26=$	4	1
111	*		2	6
	*:	1 ones and 6 ones		7
		4 tens and 2 tens	6	0
6	7	6 tens and 7 ones.		

Tens	Ones	$33+24=\square$		
		3	3	
		2	4	

Tens	Ones	$56+32=\square$			

Greater depth: Hamza has 41 sweets. Jemima has 55 sweets. How many sweets do they have altogether?

Can you represent the problem by drowing dienes to help?

Lesson 8 laps/aps
WALT: Add two 2-digit numbers (crossing tens)
WILF: I can use the column method
I can use dienes to help partition the numbers into tens and ones

Tens	Ones	$44+17=$	4	4		
$\\|\\|$	\%		1	7		
		4 ones and 7 ones	1	1		
		4 tens and 1 ten	5	0		
67	11	6 tens and 1 one				

Tens	Ones	$38+35=$		3	8
			$+$	3	5

Class 3 has 37 pencils. Class 4 has 43 pencils. How many pencils do they have altogether?
Can you represent the problem by drawing dienes?

Lesson 8 aps/haps
WALT: Add two 2-digit numbers (crossing tens)
WILF: I can use the column method
I can use dienes to help partition the numbers into tens and ones

Tens	Ones	$38+35=\square$			

Class 3 has 37 pencils. Class 4 has 43 pencils. How many pencils do they have altogether?
Can you represent the problem by drawing dienes? Can you set out your recording in a column?

Lesson 9 laps/aps
WALT: subtract two digit numbers (not crossing tens) WILF: I can use the column method
I can use dienes to help partition the numbers into tens and ones

$46-13=$		4	6
	-	1	3
		3	
6 ones -3 ones			
4 tens -1 ten	3	0	
30 and 3			

Tens	Ones

4 ones - 2 ones
6 tens - 2 tens

Tens	Ones

Jasmine has 33 stickers. Ollie has 54 stickers. now many more stickers does Ollie have?
Can you draw dienes to represent the problem?

Lesson 9 aps/haps
WALT: subtract two digit numbers (not crossing tens) WILF: I can use the column method
I can use dienes to help partition the numbers into tens and ones

Tens	Ones
N/	*
3	3

$46-13=$		4	6
	-	1	3
		3	
6 ones -3 ones		3	0
4 tens -1 ten			
30 and 3			

Tens	Ones

$64-22=\square$

Tens	Ones

$$
58-25=\square
$$

\qquad

Jasmine has 33 stickers. Ollie has 54 stickers. now many mare stickers does Ollie have?
Can you draw dienes to represent the problem? Can you set out your recording in a column?

Lesson Il aps/haps
WALT: subtract two digit numbers (crossing tens)
WILF: I can use the column method; I can use dienes to help partition the numbers into tens and ones

Greater depth: Jasmine has 37 stickers. Ollie has 52 stickers. How manty more stickers does Ollie have? Can you represent the problem by drawing dienes? Can you set out your recording in a column?

Lesson II laps/aps
WALT: subtract two digit numbers (crossing tens)
WILF: I can use the column method; I can use dienes to help partition the numbers into tens and ones

Tens	Ones
$1 / / /+* /$	
2	7

| Tens | Ones | $73-18=\square$ | |
| :--- | :--- | :--- | :--- | :--- |
| | | 7 | 3 |
| | | | |
| | | | |

Greater depth: Jasmine has 37 stickers. Ollie has 52 stickers. How manty mare stickers does Ollie have? Can you represent the problem by drawing dienes?

Lesson 12
WALT: subtract two digit numbers (crossing tens)
WILF: I can use the column method;

(Cut and stick onto previous sheet - so there are 6 on the page)

Lesson 13 laps
WALT: find bonds to 100 (tens and ones)
WILF: I can use my knowledge of number bonds to 10 and 20
I can add and subtract multiples of 10
Use the 100 square and dienes to help you!

$$
30+\square=100 \quad 100-40=\square
$$

$$
\square+60=100 \quad 100-\square=20
$$

$$
68+\square=100
$$

$$
100-23=\square
$$

$$
\square+51=100
$$

$$
100-\square=36
$$

Complete this grid. Each column and row adds up to 100. (Show your calculations)

	A	B	C
	45	45	
2		35	
3	15		65

Row 1: $45+45=$ \qquad
Row 3: $65+15=$ \qquad
Column A: $45+15=$ \qquad
Column B: $45+35=$ \qquad
Row 3:
Column C:

Lesson 13 - aps
WALT: find bonds to 100 (tens and ones)
WILF: I can use my knowledge of number bonds to 10 and 20
I can add and subtract multiples of 10
Use the 100 square and dienes to help you!
$31+\square=100$
$100-45=\square$
$\square+62=100$
$100-\square=17$
$68+\square=100$
$100-23=\square$
$\square+51=100$
$100-\square=36$
Complete this grid. Each column and row adds up to 100. (Show your calculations)

	A	B	C
1	45	45	
2		35	
3	15		65

Row 1:
Row 2:
Row 3:
Column A:
Column B:
Column C:

Lesson 13 hops
WALT: find bonds to 100 (tens and ones)
WILF: I can use my knowledge of number bonds to 10 and 20
I can add and subtract multiples of 10
Use the 100 square and dienes to help you!
$31+\square=100$
$100-45=\square$
$\square+62=100$
$100-\square=17$
$68+\square=100$
$100-23=\square$
$\square+51=100$
$100-\square=36$
Complete this grid. Each column and row adds up to 100. (Show your calculations)

	A	B	C
	43	47	
1	43		
2		33	
3	17		62

Row 1:
Row 2:
Row 3:
Column A:
Column B:
Column C:

Lesson 14
WALT: Add three one-digit numbers
WILF: I understand that the order of addition does not matter; I can find the most efficient way to add; I can look for number bonds to 10

Find the total of each row and column - remember you can add the numbers in any order

Write down the order that you add the numbers

Greater depth challenge:

Use < > or = to compare the number sentences.

$$
\begin{array}{ll}
5+4+6 \bigcirc 6+5+4 & 7+3+8 \bigcirc 7+7+3 \\
9+2+5 \bigcirc 8+3+5 & 8+4+2 \bigcirc 2+5+8
\end{array}
$$

Lesson 15
WALT: Solve problems by adding three I digit numbers

WILEs:	Me	Teacher
I understand that the order of		
addition does not matter		
I can find the most efficient way to		
add		
I can look for number bonds to 10		
I can investigate a statement and find		
lots of examples to prove if it is		
always, sometimes or never true		

Investigate this statement: odd + odd + odd $=$ odd
26.10.17

WALT: Solve problems by adding three I digit numbers

WILEs:	Me	Teacher
I understand that the order of		
addition does not matter		
I can find the most efficient way to		
add		
I can look for number bonds to 10		
I can investigate a statement and find		
lots of examples to prove if it is		
always, sometimes or never true		

Investigate this statement: odd + odd + odd $=$ odd
26.10.17

WALT: Solve problems by adding three I digit numbers

WILEs:	Me	Teacher
I understand that the order of		
addition does not matter		
I can find the most efficient way to		
add		
I can look for number bonds to 10		
I can investigate a statement and find		
lots of examples to prove if it is		
always, sometimes or never true		

Investigate this statement: odd + odd + odd $=$ odd

Greater depth:
Investigate this statement:

$$
\text { even }+ \text { even }+ \text { even }=\text { even }
$$

Greater depth:
Investigate this statement:

$$
\text { even }+ \text { even }+ \text { even }=\text { even }
$$

Greater depth:
Investigate this statement:

$$
\text { even }+ \text { even }+ \text { even }=\text { even }
$$

Greater depth:
Investigate this statement:

$$
\text { even + even + even }=\text { even }
$$

Greater depth:
Can you write your own statement about adding odd/even numbers to investigate?

Greater depth:
Can you write your own statement about adding odd/even numbers to investigate?

Greater depth:
Can you write your own statement about adding odd/even numbers to investigate?

Greater depth:
Can you write your own statement about adding odd/even numbers to investigate?

