Lesson | aps/laps

WALT: Add multiples of ten

WILF: I understand I need to add the tens digit.

Tens	Ones
	•
7	2

32	+	40	=	
				32
				<u>+40</u>

Tens	Ones

$$20 + 32 = ____$$

$$20 + 32 = ____$$

$$20 + 32$$

Tens	Ones

Tens	Ones

Lesson | aps/haps

WALT: Add multiples of ten

WILF: I understand I need to add the tens digit.

Tens	Ones
	•

+40

$$20 + 32 = _{_{_{_{_{_{_{_{_{_{_{1}}}}}}}}}}$$

$$20 + 32 = _{_{_{_{_{_{_{_{_{_{_{1}}}}}}}}}}$$

$$20 + 32 = _{_{_{_{_{_{_{_{_{1}}}}}}}}$$

$$20 + 32 = _{_{_{_{_{_{_{_{1}}}}}}}$$

Tens	Ones

30 + 23 =

Lesson | aps/haps

WALT: Subtract multiples of ten

WILF: I understand I need to subtract the tens digit.

Tens	Ones
	•

42 -30

Tens Ones

59 -20

Tens	Ones

Tens

$$61 - 50 =$$

Lesson | aps/laps

WALT: Subtract multiples of ten

WILF: I understand I need to subtract the tens digit.

Tens	Ones
///	•
1	2

<u>-30</u>

Tens	Ones

Tens	Ones

73 <u>-40</u>

Tens	Ones

WALT: Subtract multiples of ten

WILF: I understand I need to subtract the tens digit.

Tens	Ones
	•
1	2

42 -30

Tens Ones

59 <u>-20</u>

Tens Ones

$$73 - 40 =$$

73 <u>-40</u>

Tens	Ones

$$61 - 50 =$$

61 <u>-50</u>

Lesson I

Greater depth challenge:

What is the value of each row and column?

Greater depth challenge:

What is the value of each row and column?

Circles represent 20 Triangles represent 10 Squares represent 50 Lesson 2 - laps (count on in ls)

WALT: Add 2 digit and I digit numbers (crossing ten)

WILF: I can count on using a number line; I can use my number bonds

Lesson 2 aps

WALT: Add 2 digit and 1 digit numbers (crossing ten)
WILF: I can count on using a number line; I can use my
number bonds

Lesson 2 - haps

WALT: Add 2 digit and 1 digit numbers (crossing ten)
WILF: I can count on using a number line; I can use my
number bonds

14

Greater depth challenge:

Here are three digit cards.

Place the digit cards in the number sentence.

How many different totals can you find?

Which is the smallest total?

Which is the largest total?

Greater depth challenge:

Here are three digit cards.

Place the digit cards in the number sentence.

How many different totals can you find?

Which is the smallest total?

Which is the largest total?

Lesson 3 - laps/aps

WALT: Add 2 digit and I digit numbers (crossing ten)

WILF: I can partition 2 digit numbers in order to add them; I can line numbers up in columns;

I can use my number bonds

Greater Depth: Use the number line counting an method to check that you are correct

Tens	Ones
3 4	<i>X</i> 2

 $\frac{+ 8}{42}$ $\frac{27 + 5 = }{---}$

36

Tens	Ones

Tens	Ones

Ones

Lesson 3 aps/haps

WALT: Add 2 digit and I digit numbers (crossing ten)

WILF: I can partition 2 digit numbers in order to add them; I can line numbers up in columns;

I can use my number bonds

Greater Depth: Use the number line counting an method to check that you are correct

Tens	Ones.
3 4	<i>X</i> 2

	1
Tens	Ones

	2	/
<u>+</u>	•	5

36

Tens	Ones

Lesson 4 - aps

WALT: Subtract 2 digit and I digit numbers (crossing ten)

WILF: I can count back using a number line

I can use my number bonds

Lesson 4 (aps/laps)

WALT: Subtract 2 digit and I digit numbers (crossing ten)

WILF: I can count back using a number line

I can use my number bonds

Lesson 4 Haps

WALT: Subtract 2 digit and I digit numbers (crossing ten)

WILF: I can count back using a number line

I can use my number bonds

14

Lesson 4

Greater depth challenge:

Here are three digit cards:

Place the digit cards in the Number sentence.

How many diggerent totals can you gind?

What is the smallest total?

What is the largest total?

Greater depth challenge:

Here are three digit cards:

Place the digit cards in the Number sentence.

How many diggerent totals can you gind?

What is the smallest total?

What is the largest total?

Greater depth challenge:

Here are three digit cards:

Place the digit cards in the Number sentence.

How many diggerent totals can You find?

What is the smallest total? What is the largest total?

Lesson 6

WALT: Subtract 2 digit and I digit numbers (crossing ten)

WILF: I can partition 2 digit numbers in order to subtract them;

I can line numbers up in columns

I can use my number bonds

31 - 7 =	
----------	--

Tens	Ones
2	4

Ones

Tens	Ones

Tens	Ones

- 7		2/	1	
	-		7	

	4	4	
-		6	

- 8	,

_		
	, ,	

Greater depth: Can you use another method to check if your answers are correct?

Lesson 7 aps/laps

WALT: Add two 2-digit numbers (not crossing tens)

WILF: I can use the column method; I can use dienes to help partition the numbers into tens and ones

Tens	Ones	41 + 26 =		4	1
	•		+	2	6
11		1 ones and 6 ones			7
	• • •	4 tens and 2 tens		6	0
6	7	6 tens and 7 ones.			

Tens	Ones	33 + 24 =		3	3
	• • •		+	2	4
	• •	3 ones and 4 ones 3 tens and 2 tens			

Tens	Ones	56 + 32 =		5	6
			+	3	2
			_		

Greater depth: Hamza has 41 sweets. Jemima has 25 sweets. How many sweets do they have altogether?

Can you represent the problem by drawing dienes to help?

Lesson 7 aps/haps

WALT: Add two 2-digit numbers (not crossing tens)

WILF: I can use the column method; I can use dienes to help partition the numbers into tens and ones

Tens	Ones	41 + 26 =		4	1
	•		+	2	6
11		1 ones and 6 ones			7
	• • • •	4 tens and 2 tens		6	0_
6	7	6 tens and 7 ones			

Tens	Ones	33 + 24 =		3	3
			+	2	4

Tens	Ones	56 + 32 =	
			+

Greater depth: Hamza has 41 sweets. Jemima has 55 sweets. How many sweets do they have altogether? Can you represent the problem by drawing dienes to help?

Lesson 8 laps/aps

WALT: Add two 2-digit numbers (crossing tens)

WILF: I can use the column method

I can use dienes to help partition the numbers into tens and ones

Tens	Ones	44 + 17 =		-	4
			1		7
		4 ones and 7 ones		1	1
		4 tens and 1 ten —	F	<u>. </u>	0
6 7	1 1	6 tens and 1 one _			

Tens	Ones	36 + 27 =		3	6
			+	2	7
11		6 ones and 7 ones			7
11	****	3 tens and 2 tens		6	0

Tens	Ones	38 + 35 =		3	8
			+	3	5
			_		

Class 3 has 37 pencils. Class 4 has 43 pencils. How many pencils do they have altogether?

Can you represent the problem by drawing dienes?

Lesson 8 aps/haps

WALT: Add two 2-digit numbers (crossing tens)

WILF: I can use the column method

I can use dienes to help partition the numbers into tens and ones

Tens	Ones	44 + 17 =		4	4
	::		+	1	7
		4 ones and 7 ones			
		4 tens and 1 ten			
<i>6</i> 7	1 1	6 tens and 1 one			
Tens	Ones	36 + 27 =		3	6
			+	2	7

Tens	Ones	38 + 35 =	
			+

Class 3 has 37 pencils. Class 4 has 43 pencils. How many pencils do they have altogether?
Can you represent the problem by drawing dienes? Can you set out your recording in a column?

Lesson 9 laps/aps

WALT: subtract two digit numbers (not crossing tens)

WILF: I can use the column method

I can use dienes to help partition the numbers into tens and ones.

Tens	Ones
	* ;
3	3

46 - 13 =			4	6	
		_	1	3	
	-			2	Ī

6 ones - 3 ones

4 tens - 1 ten <u>3</u> 0

30 and 3

64 - 22 =		
64 - 22 =		

- 2 2

4

4 ones - 2 ones

6 tens - 2 tens

Tens	Ones

	5	8	
-	2	5	

Jasmine has 33 stickers. Ollie has 54 stickers. now many more stickers does Ollie have?

Can you draw dienes to represent the problem?

Lesson 9 aps/haps

WALT: subtract two digit numbers (not crossing tens)

WILF: I can use the column method

I can use dienes to help partition the numbers into tens and ones.

Tens	Ones
	* ;
3	3

46 - 13 =			4	6	Ī
		_	1	3	

6 ones - 3 ones

4 tens - 1 ten <u>3 0</u>
30 and 3

Tens	Ones

2	2

4

6

3

Tens	Ones

_

Jasmine has 33 stickers. Ollie has 54 stickers. now many more stickers does Ollie have?

Can you draw dienes to represent the problem? Can you set out your recording in a column?

Lesson II aps/haps

WALT: subtract two digit numbers (crossing tens)

WILF: I can use the column method; I can use dienes to help partition the numbers into tens and ones

**	01 20	_	2	5

Tens	Ones	73 - 18 =	

Greater depth: Jasmine has 37 stickers. Ollie has 52 stickers. How manty more stickers does Ollie have? Can you represent the problem by drawing dienes? Can you set out your recording in a column?

Lesson II laps/aps

WALT: subtract two digit numbers (crossing tens)

WILF: I can use the column method; I can use dienes to help partition the numbers into tens and ones

Tens	Ones	73 - 18 =		7	3
				1	8
			_		

Greater depth: Jasmine has 37 stickers. Ollie has 52 stickers. How manty more stickers does Ollie have? Can you represent the problem by drawing dienes?

WALT: subtract two digit numbers (crossing tens)

WILF: I can use the column method;

46 - 19 =	4	6	
	 1	9	

53 - 24 =	5	3	
	 2	4	

(Cut and stick onto previous sheet - so there are 6 on the page)

Lesson 13 laps

WALT: gind bonds to 100 (tens and ones)

WILF: I can use my knowledge of number bonds to 10 and 20 I can add and subtract multiples of 10

Use the 100 square and dienes to help you!

$$30 + \boxed{} = 100$$

Complete this grid. Each column and row adds up to 100. (Show your calculations)

	A	В	С
1	45	45	
2		35	
3	15		65

 $Row 1: 45 + 45 = ___$

 $Row 3: 65 + 15 = ___$

Column A: 45 + 15 = ____

Column B: 45 + 35 = ____

Row 3:_____

Column C:_____

Lesson 13 - aps

WALT: gind bonds to 100 (tens and ones)

WILF: I can use my knowledge of number bonds to 10 and 20 I can add and subtract multiples of 10

Use the 100 square and dienes to help you!

Complete this grid. Each column and row adds up to 100. (Show your calculations)

	Α	В	C
1	45	45	
2		35	
3	15		65

Row 1:

Row 2: _____

Row 3: _____

Column A:

Column B:

Column C:____

Lesson 13 haps

WALT: gind bonds to 100 (tens and ones)

WILF: I can use my knowledge of number bonds to 10 and 20 I can add and subtract multiples of 10

Use the 100 square and dienes to help you!

Complete this grid. Each column and row adds up to 100. (Show your calculations)

	Α	В	C
1	43	47	
2		33	
3	17		62

Row 1: _____

Row 2: _____

Row 3: _____

Column A:

Column B: _____

Column C:_____

Lesson 14

WALT: Add three one-digit numbers

WILF: I understand that the order of addition does not matter; I can find the most efficient way to add; I can look for number bonds to 10

Find the total of each row and column - remember you can add the numbers in any order

5	4	2	
3	7	8	
5	7	3	

Write down the order that you add the numbers

Greater depth challenge:

Use $\langle \rangle$ or = to compare the number sentences.

$$5+4+6\bigcirc 6+5+4$$
 $7+3+8\bigcirc 7+7+3$
 $9+2+5\bigcirc 8+3+5$ $8+4+2\bigcirc 2+5+8$

WALT: Solve problems by adding three I digit numbers

WILFs:	Me	Teacher
I understand that the order of		
addition does not matter		
I can find the most efficient way to		
add		
I can look for number bonds to 10		
I can investigate a statement and find		
lots of examples to prove if it is		
always, sometimes or never true		

Investigate this statement: odd + odd + odd = odd

26.10.17

WALT: Solve problems by adding three I digit numbers

WILFs:	Me	Teacher
I understand that the order of		
addition does not matter		
I can find the most efficient way to		
add		
I can look for number bonds to 10		
I can investigate a statement and find		
lots of examples to prove if it is		
always, sometimes or never true		

Investigate this statement: odd + odd + odd = odd

26.10.17

WALT: Solve problems by adding three I digit numbers

WILFs:	Me	Teacher
I understand that the order of		
addition does not matter		
I can gind the most eggicient way to		
add		
I can look for number bonds to 10		
I can investigate a statement and find		
lots of examples to prove if it is		
always, sometimes or never true		

Investigate this statement: odd + odd + odd = odd

Greater depth:

Can you write your own statement about adding odd/even numbers to investigate?

Greater depth:

Can you write your own statement about adding odd/even numbers to investigate?

Greater depth:

Can you write your own statement about adding odd/even numbers to investigate?

Greater depth:

Can you write your own statement about adding odd/even numbers to investigate?